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ABSTRACT 
 

Toward Using Empirical Mode Decomposition to Identify Anomalies in Streamflow 
Data and Correlations with Other Environmental Data 

 
Saul Gallegos Ramirez 

Department of Civil and Environmental Engineering, BYU 
Master of Science 

 
I applied empirical mode decomposition (EMD) and the Hilbert-Herbert transforms, as 

tools to analyze streamflow data. I used the EMD method to extract and analyze periodic 
processes and trends in several environmental datasets including daily stream flow, daily 
precipitation, and daily temperature on data from the watersheds of two rivers in the Upper 
Colorado River Basin, the Yampa and the Upper-Green rivers. I used these data to identify 
forcing functions governing streamflow. Forcing functions include environmental factors such as 
temperature and precipitation and anthropogenic factors such as dams or diversions. The Green 
and Yampa Rivers have similar headwaters, but the Yampa has minimal diversions or controls 
while Flaming George Dam on the Green river significantly affects flow. This provides two 
different flow regimes with similar large watersheds. In addition to flow data, I analyzed several 
time series data sets, including temperature and precipitation from Northeast Utah, North 
Western Colorado, and Southern Wyoming. These data are from the area that defines the Yampa 
River and Green River watersheds, which stretch from Flaming Gorge Dam to Ouray Colorado.  

The EMD method is a relatively new technique that allows any time series data set, 
including non-linear and non-stationary datasets that are common in earth observation data, to be 
decomposed into a small quantity of composite finite data series, called intrinsic mode functions 
(IMFs). The EMD method can decompose any complicated data into several IMFs that represent 
independent signals in the original data. These IMFs may represent periodic forcing functions, 
such as environmental conditions or dam operations, or they may be artifacts of the 
decomposition method and not have an associated physical meaning. This study attempts to 
assign physical meaning to some IMFs resulting from the decomposition of the Green and 
Yampa flows where possible. To assign physical meaning to the IMFs, I analyzed frequencies of 
each IMF using the Hilbert-Hung transform, part of the Empirical Mode Decomposition method, 
and then compared frequencies of the IMFs with the known frequencies of physical processes. I 
performed these calculations on both flow, temperature, and precipitation.  

I found significant correlation between IMF components of flow, precipitation, and 
temperature data with El Niño Southern Oscillation (ENSO) events. The EMD process also 
extracts the long-term trend in non-linear data sets that can provide insights into the effects of 
climate change on the flow system. Though in preliminary stages of research, these analysis 
methods may lead to further understanding the availability of water within the upper Yampa and 
Green River Watersheds. 

Keywords: Empirical Mode Decomposition, Hilbert Haung Transforms, El Niño, La Niña, 
Yampa River, Yampa, Flaming Gorge, Green River
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1 INTRODUCTION 

 Problem Statement 

Some environmental processes create signals that can be observed in other processes that 

they influence. For example, analysis has shown that there is correlation of the El Niño Southern 

Oscillation (ENSO) process with precipitation and temperature datasets collected from gage data 

(Norden Eh Huang, 2014), that is the signal from the ENSO process can be observed in both 

precipitation and temperature signals. In the past to separate and identify such signals, scientists 

have analyzed data using wavelet analysis, and Fourier transforms (Norden E Huang et al., 

1998). These methods, when applied to environmental data, have difficulties analyzing the non-

linear, non-periodic signals that commonly occur in nature. Recently, researchers have extracted 

signals that correlate to the ENSO signal from precipitation data using a new analysis method 

called Empirical Mode Decomposition (EMD) (el-Askary, Sarkar, Chiu, Kafatos, & El-Ghazawi, 

2004). This method works on signals that are non-linear and non-stationary (Norden E Huang et 

al., 1998). I applied Empirical Mode Decomposition (Norden E Huang et al., 1998) to extract 

and analyze trends and periodic processes in several environmental datasets including daily 

streamflow, daily precipitation, and daily temperature on two rivers in the Upper Colorado River 

Basin. I analyzed the ability of this technique to extract signals even after Flaming Gorge Dam, a 

very large dam on the Green River, significantly altered the processes.  
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The Empirical Mode Decomposition method is a relatively new empirical signal 

processing technique that allows any time series data set, including non-linear and non-stationary 

datasets that are common in earth observation data, to be decomposed into a small quantity of 

composite finite data series called intrinsic mode functions (IMFs) (Norden E Huang et al., 

1998). The EMD process also extracts a long-term trend in non-linear data sets that can provide 

insights into the effects of climate change or other long-term processes on the flow system. 

These trends and individual IMFs may or may not represent any physical processes.  

The algorithm EMD uses is simple and does not assume stationary or linear signals. First, 

all local extrema are identified and a function to define the upper and lower envelopes is 

generated by interpolating between the local maxima and minima. Next, a temporary signal is 

created by interpolating an average of the upper and lower envelopes at every data interval (Kim 

& Oh, 2009). Next, the temporary signal is subtracted from the original dataset to obtain a partial 

IMF. The process is repeated until the number of extrema and zero-crossings differ by a 

maximum of one, the local average of the resulting equation must be zero. Once both 

requirements are satisfied, the partial IMF becomes a complete IMF, and the remaining data 

becomes a remainder. The IMF is then subtracted from the data set, and the processes is 

repeated. This process is known as sifting. I include a more comprehensive description in section 

2.2. 

 Gaps in Research 

Time series data can be used to analyze and understand the behavior of a processes over 

time using various signal processing techniques. Sometimes signal processing can reveal 
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valuable information by decomposing time series dataset into subsets. These subsets can identify 

independent processes or isolate and characterize the effects of a smaller component. 

Historically, researchers have commonly used several tools for processing periodic signals 

including spectrograms, wavelet analysis, and the Fourier analysis. The resulting components 

from these analyses can sometimes represent simple real processes that can be combined to 

create the original signal. In other cases, these components, which are simpler than the original 

signal, do not represent any real processes, but are just artifacts of the mathematical 

decomposition. Many of these methods, such as wavelets or Fourier transform methods, require a 

number of conditions be met for application. Common conditions are linearity and stationarity. 

Each of these methods make assumptions that are not always valid when analyzing physical data 

(Norden E Huang et al., 1998). 

Some of the challenges that arise when attempting to analyze physical data is that most real 

periodic environmental data are non-linear and non-stationary. Non-linear signals are defined as 

signals described by differential equations with time varying coefficients. Linear signals have 

constant coefficients. For example, the El Niño Southern Oscillation (ENSO) events have a 

periodic structure, but the structure period changes from 5 to 7 years on a seeming random basis. 

Non-stationary datasets have averages, variances, or covariances that change over time. Most 

environmental data sets have an underlying trend that makes them non-stationary. 

EMD is a signal processing method that can process non-linear and non-stationary data and 

exactly recreates the original signal when the resulting component IMFs are summed. This is in 

contrast to approaches such as wavelets or Fourier analysis that require linear and stationary 

signals and only approximate the original signal when summing the resulting components. These 

methods, wavelets or Fourier analysis, can be only used on non-linear and non-stationary signals 
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by using a large number of components to represent the non-linear or non-stationary components 

over some finite signal length. This representation is only approximate, meaning the recreated 

signal, usually created by sum of the decomposed signal components, will not reproduce the 

original signal exactly. 

By using EMD, environmental data sets with non-linear and non-stationary data can be 

processed. Most environmental data sets are non-stationary, that is they exhibit trends, and do 

not always meet other statistical assumptions required for non-empirical analysis. Because of the 

relaxed assumptions, EMD is a more mathematically sound approach to process environmental 

signals. However, a gap in research lies in the fact that, due to the relatively young age of EMD, 

signal processing with this method is not widely applied to streamflow or precipitation data. 

 Objectives 

I evaluated whether I could use EMD methods to quantify and characterize signals from 

different environmental forcing functions and processes and determine if the signals were present 

in flow data from different locations that have similar watersheds but different amounts of 

anthropogenic control. Specifically, I will explore whether the EMD method can be used to 

analyze river flow data and identify various forcing functions such as dam operations, El Niño 

Southern Oscillation (ENSO), and also determine if the same periodic processes present in the 

flow data can be identified in local temperature or precipitation data. I evaluated whether 

processes like large reservoirs obscured or hid signals from nature processes, such as ENSO, or 

whether these signals were present in the flow data below the dam.  

I selected the Green and Yampa Rivers as they have similar headwaters, but the Yampa has 

minimal diversions or controls while Flaming George Dam on the Green River significantly 
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affects flow. This provides flow data from two different river regimes with similar large 

watersheds. 

The objective of this study is to process several datasets, including flow from two rivers, 

one controlled and one mostly wild, along with temperature and precipitation records from the 

area comprising the watersheds of these two rivers. I will extract long-term trends and attempt to 

identify signals from natural processes. I will explore whether this method can be used to 

separate the effects of dams and other man-made regulatory structures from environmental 

processes. Once I have decomposed the original signals into independent, periodic IMFs, I will 

attempt to associate physical meaning, or physical processes, with selected IMFs. This may be 

difficult, since periodic processes within individual IMFs may or may not have physical meaning 

(Norden E Huang et al., 1998). However, if signals can be identified across the two rivers or 

different data sets, it is more likely that the IMF represents an actual process, either natural or 

anthropogenic 
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2 BACKGROUND 

 El Niño Southern Oscillation Data 

The El Niño Southern Oscillation is an environmental phenomenon caused by bands of 

warm water that occur in the Pacific Ocean between the International Date Line and 120°W 

(Service, 2019). Every few years, El Niño affects the likelihood of floods in the western coast of 

South America, as well as the likelihood of drought in South East Asia. This climate pattern 

repeats on an approximate five- to seven-year period, and affects precipitation, and thus river 

flow, in western North and South America.  

To understand what El Niño is, one must understand the normal climate pattern in the 

Southern Pacific Ocean. The winds in the Pacific Ocean travel from South America in the 

direction of Australia, this is a phenomenon known as the South East Trade winds, which occur 

between 30° latitude and the equator. The area is known for consistent winds of about 11 to 13 

miles per hour. The South East Trade Winds are named after the ability to quickly move trading 

ships across the ocean and are caused by the Coriolis effect. As wind moves from east to west, 

the shear force moves the warm water near the ocean surface piling it on the western side of 

Australasia. Near South America this creates an upwelling, the rising of seawater in this 

upwelling region causes the cooler water to rise to the surface and replace the warm water being 

transported. This creates a temperature gradient where warm surface water is in Australasia, and 

cool surface water is near South America. The warm water increases air temperature, resulting in 
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rising air, cloud formations, and ultimately more rainfall. This pattern reinforces the wind 

circulations because warm moist air will rise in the west and cool, drier, air will descend near the 

Eastern part of the Pacific Ocean causing a steady state scenario. This is the normal weather 

pattern, with moisture being drawn away from the Americans, creating drier climate in the 

Americas (Trenberth, 1997) (Pizarro & Lall, 2002). 

El Niño occurs when the trade winds are weakened. As trade winds are weakened, there is 

less transport of warm water, and less upwelling of cool water. Therefore, the centroid of the 

warm water moves eastward toward South America until the temperature gradient is eliminated, 

ultimately changing the precipitation and wind patterns in the Pacific Ocean. This results in 

increased precipitation in western North and South America.  

La Niña occurs when trade winds are strengthened, moving or containing the warm water 

at the western part of the tropical Pacific; this process causes an increase of upwell in the Pacific 

Ocean. Air will rise over this warm area, but will dump precipitation near the center of the ocean. 

La Niña is the opposite of El Niño, in the fact that it will increase drought probability in South 

America, and flood probability in Australasia as shown in Figure 2.1-1 (NOAA, 2018).  

The change of wind pattern can affect the likelihood of floods due to precipitation within 

the United States as shown in Figure 2.1-2 (NOAA, 2018).  

The goal of my research was to determine if I could use EMD to analyze the environmental 

datasets and extract the signals that characterize the El Niño or La Niña events from within these 

periodic environmental processes, river flow, rainfall, and temperature in the presence of man-

made control structures such as a large dam. 
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Figure 2.1-1 Precipitation Patterns Caused by El Niño and La Niña (NOAA, 2018) 

 

 
Figure 2.1-2 Precipitation Patterns Caused by El Niño in the United States (NOAA, 2018) 
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Quantitatively, El Niño and La Niña events are measured and standardized by the National 

Oceanic and Atmospheric Administration (NOAA) using the Oceanic Niño Index (ONI). The 

ONI is a running 3-month sea surface temperature (SST) mean in the Niño 3.4 region which is 

located at 5ºN-5ºS, 120º-170ºW. Values are based on a centered 30-year normal SST which is 

updated every 5 years. El Niño events are defined as 5 consecutive ONI periods with a value of 

+0.5º while La Nina events have a 5 consecutive ONI periods with a value of -0.5º. The SST 

measurements are obtained between 1 millimeter and 20 meters below the sea surface. The ONI 

measurements begin in December so that the first value will be centered in January (Service, 

2019).  

 Proposed Method of Time Series Analysis 

2.2.1 Empirical Mode Decomposition 

The EMD method is a relatively new empirical technique that allows any time series data 

set, including non-linear and non-stationary datasets, that are common in earth observation data, 

to be decomposed into a small quantity of composite finite data series called IMFs (Norden E 

Huang et al., 1998). The EMD process also extracts a long-term trend in non-linear data sets 

that can provide insights into the effects of climate change or other long-term processes on the 

flow system. These trends may or may not represent any physical processes. The algorithm 

EMD uses is simple and does not assume stationary or linear signals.  

In the EMD algorithm, first all local extrema are identified, both local maximums and 

minimums (Figure 2.2.1-1a). In the next step, the algorithm interpolates a curve through the 

local maxima or minima to create the upper and lower envelopes (Figure 2.2.1-1b). For this task 

I used the piecewise cubic hermite interpolating polynomial (PCHIP) algorithm to interpolate 
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the local maxima and minima. Next, the average of these two envelopes is computed, by 

interpolating the upper and lower envelopes at every data interval (Figure 2.2.1-1c). This 

average is subtracted from the original dataset to obtain a partial IMF (Figure 2.2.1-1d). The 

process is repeated until the number of extrema and zero-crossings differ by one and the local 

average is zero (Figure 2.2.1-1e). Once both requirements are satisfied, the partial IMF becomes 

a complete IMF, and the remaining data becomes a residual and the process starts again (Figure 

2.2.1-1f). This process is known as sifting.  

After an IMF is created, it is subtracted from the original data and the process is repeated 

on the remaining data until the stopping rule is satisfied. The stopping rule is a convergence 

criterion that stops sifting when the current relative tolerance is less than the specified tolerance 

or a maximum number of IMFs are created. Once the stopping rule is satisfied, the remainder 

becomes the residual, which describes the dataset’s long-term trend. 

 

Figure 2.2.1-1: Sifting/Decomposition Process Visualized (Kim & Oh, 2009) 
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I applied this technique to flow, precipitation, and temperature gage datasets within the 

area of interest to highlight trends, and attempted to assign a physical explanation to constant 

frequencies within oscillations. To ensure accurate results, I included only data sets with over 

60 years of data in these calculations. 

When EMD is applied to environmental data without a boundary condition, there are a 

myriad of outcomes based on the sifting tolerance. Due to human influence causing drastic 

changes in river flow, I used data from the stream gage at Flaming Gorge to select a value of 

0.2 to use as the sifting tolerance. This tolerance of 0.2 is also suggested by Dr. Haung (Norden 

E Huang et al., 1998). Setting the sifting tolerance too low will overdecompose the signal 

making it likely to lose any physical meaning, and making the tolerance too high will 

superimpose signals that potentially are different (Norden E Huang et al., 1998). Haung suggests 

this value normally be between 0.2 and 0.3, therefore the value I selected is in the recommended 

bounds. I selected this tolerance value because the resulting residual most accurately depicted 

historical markers such as the filling of Flaming Gorge Reservoir in 1963, the move from peak 

hour flooding to constant flow for power generation in 1992, and the move to a more natural 

flow pattern that increased river flow in 2006. I did not set a limit on the number of IMFs created, 

letting the algorithm run to completion. 

2.2.1 Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) 

The EMD code requires an interpolation method to generate the data envelopes. I used 

PCHIP during IMF generation. Most EMD code uses cubic spline interpolation, but for 

environmental data, cubic spline methods can result in significant under and overshoot in the 

interpolated data. The results of PCHIP are a shape-preserving piecewise cubic interpolation 
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that does not overshoot or undershoot as other data interpolators. A simple example of why 

this interpolator was chosen over others is shown in Figure 2.2.1-1 and Figure 2.2.1-2.  

1 x = -3:3;  
2 y = [-1 -1 -1 0 1 1 1];  
3 xq1 = -3:.01:3; 
4 p = pchip(x,y,xq1); 
5 s = spline(x,y,xq1); 
6 plot(x,y,'o',xq1,p,'-',xq1,s,'-.') 
7 legend('Sample Points','pchip','spline','Location','SouthEast') 

 

Figure 2.2.1-1 Sample Code Creating Data Comparing Overshoot and Undershoot of the 
Spline Method to the PCHIP Method Which Does Not Under or Overshoot the Data 
Envelope  

 

Line 1 of the code in Figure 2.2.1-1, sets a value of x from -3 to 3 by a step of 1, while 

line 2 is a set of random y values. The variable xq1 is a query point for our interpolation, or 

the x-coordinates at which Matlab will apply the interpolation function. Figure 2.2.1-2 shows 

overshoot from the spline interpolation from -3 to -2 and from 1 to 2. The spline interpolation 

experiences undershoot from -2 to -1 and from 2 to 3. However, the PCHIP interpolation 

connects our data without any visible overshoot or undershoot. Overshoot and undershoot not 

only introduce error, but can obscure physical meaning in datasets such as flow where 

negative flow has no meaning. 
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Figure 2.2.1-2 Plotting of Sample Data Comparing Overshoot and Undershoot of the 
Spline Method and How the PCHIP Method Does Not Over or Undershoot the Data 
Envelope  

 

2.2.2 Hilbert-Haung Transform 

The Hilbert-Haung Transform (HHT) is a computational method used to solve for the 

instantaneous frequency changes within one oscillation cycle (Norden Eh Huang, 2014). The 

HHT gives insight to the dominant signal frequency while allowing a non-constant phase. Paired 

with the EMD, the HHT analyzes data by processing the IMF subsets through the HHT 

algorithm. Like EMD, the HHT method can be used on non-linear data, which allows the method 

to be adaptive. However, the adaptive nature of the HHT makes it difficult to describe 

theoretically (Norden Eh Huang, 2014). The HHT can be used to generate frequency plots 

similar to spectrograms for IMF data.  

 Common Methods of Environmental Time Series Data Analysis 

2.3.1 Fourier Transforms 

The Fourier Transform is the most common transformation for time series data analysis. 

This transformation method assumes that any signal can be transformed into a summation of 
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sinusoidal functions (Bracewell & Bracewell, 1986). These sinusoidal functions have a 

stationary basic period with time independent frequency. This means that the Fourier Transform 

is only able to process stationary data. Perhaps its greatest limitation of the Fourier Transform 

is that approximations are used to model datasets, using sinusoidal functions. When the 

sinusoidal decompositions are used to reconstruct the original signal, the result contains 

approximation errors and does not exactly represent the original dataset. 

2.3.2 Spectrogram Method 

A spectrogram method of analysis uses the Fourier decomposition as its base. It 

implements a limited time window-width Fourier spectral analysis (Stankovic, 1994) (Norden 

E Huang et al., 1998). By continuously plotting frequencies along the time axis, you can 

compute and visualize a time-frequency distribution. Spectrograms are often used to visualize 

time series data, emphasizing amplitude, intensity, and overtones. 

Spectrogram analysis relies on the same assumption of Fourier spectral analysis: that data 

are piecewise stationary. This implies that the window of analysis perfectly captures stationary 

time scales. However, this assumption is violated when analyzing non-stationary, non-linear 

signals. 

2.3.3 Wavelet Transforms  

The Wavelet Transform is another relatively recent signal processing method. Similar to 

a Spectrogram, the wavelet analysis uses an adjustable window that fits a repeating function to 

the data at different scales, similar to the way Fourier analysis fits sine functions at different 

scales (Labat, 2008). This approach is useful for analyzing gradual changes in frequency within 

data as, unlike Fourier analysis, wavelets can represent these frequencies changes. Most 
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applications of the Wavelet Transforms have been used in image compression and edge 

detection (Norden E Huang et al., 1998). Though there have been applications to river flow 

(Coulibaly & Burn, 2004; Melesse, Abtew, Dessalegne, & Wang, 2010; Smith, Turcotte, & 

Isacks, 1998). 

Wavelet analysis has difficulty adapting over time for environmental data, as it is not 

designed for non-linear data. Because the wavelet analysis is based on a summation of functions, 

it inherits some of the shortcomings of the Fourier Transform Analysis. 

 Summary of Signal Analysis Methods 

A summary of the different transform methods can be seen in Table 2.3-1 (Norden E 

Huang et al., 1998). 

Table 2.3-1: A Summary of Different Signal Processing Methods and 
Descriptions 

 Fourier Wavelet Hilbert 

Basis a priori a priori adaptive 

Frequency 
convolution: 
global 
uncertainty 

convolution: regional 
uncertainty 

differentiation: local, 
certainty 

Presentation energy-
frequency 

energy-time-frequency energy-time-frequency 

Nonlinear No No Yes 

Nonstationary no yes yes 

Feature Extraction no discrete: no; 

continuous: yes 

yes 

Theoretical base theory 
complete 

theory complete empirical 
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3 SOFTWARE RESOURCES USED 

 MATLAB 

MATLAB® is a high level programing language and numerical analysis environment 

developed by Mathworks (MathWorks, 2019). MATLAB is commonly used by engineers and 

scientists to develop algorithms to solve mathematics problems. I chose MATLAB as the 

primary software for developing the EMD code due to its built-in Empirical Mode 

Decomposition functions released with the MATLAB 2018R package. 

 ArcGIS Pro 

ArcGIS is a geographic information system (GIS) developed by ESRI (ESRI, 2019). Its 

primary application in this research was to compile geospatial information such as gage locations 

and gage types, and visually present it as a map. 

 Excel 

Excel is a spreadsheet program developed by Microsoft as part of the Microsoft Office 

Suite (Microsoft, 2019). The program is arranged in rows and columns that be used to input data 

and manipulate those data mathematically. I used Excel primarily to organize data before 

inputting the datasets into MATLAB. 
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4 IMPLEMENTATION 

 Study Area 

For this project, I analyzed data from several stream gages along the Green and Yampa 

Rivers. Data were provided by the United States Geological Survey (USGS) (Survey, 2019). My 

original selection of gages was: Flaming Gorge, Green River near Jensen Utah, Green River near 

Ouray, Yampa near Deer Lodge Colorado, Little Snake near Lily Colorado, Yampa, near Maybel 

Colorado, Yampa near Craig Colorado, Yampa above Elk Head near Hayden Colorado and 

Yampa river near Elk Head (Figure 4.1-1). I selected these gages because they characterize flow 

in the Green and Yampa Rivers, and flows in the Green River after the confluence where the 

Yampa joins the Green. As noted, these rivers have similar headwaters, but the Yampa has 

minimal diversions or controls while Flaming George Dam on the Green River significantly 

affects flow. This provides two different flow regimes with similar large watersheds. The reason 

for selecting these gages is to evaluate if the rivers, before joining, exhibit different periodic 

processes, if these processes can be correlated with periodic processes extracted from the 

temperature or precipitation data, and if these processes can be extracted from the data after the 

confluence of the two rivers. I targeted the El Niño processes with a period of 5 to 7 years to 

determine if I could identify these processes in the data from these gages and if these signals 

could be tracked downstream.  
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Figure 4.1-1 Overview of Study Within the Yampa River and Green River Watersheds 

 

I also analyzed precipitation data from gages within the watershed at Flaming Gorge, 

Jensen, Ouray, Maybel, and Craig (Figure4.1-1). I selected precipitation data from 

meteorological stations as close to the flow area of study as possible. Precipitation data were 

obtained through the Utah Climate Center, which provided the Vernal and Ouray datasets 

(Center, 2019). 

Another interesting set of data that I analyzed was air temperature. Temperature was more 

difficult to obtain because there are not many temperature gages located in my study area. I 

selected temperature gages at Vernal, Utah; Grand Junction, Colorado; Jensen, Utah; and 

Flaming Gorge Dam, Utah (Center, 2019). 
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 Data Collection 

Stream discharge data were obtained from the USGS database (Survey, 2019). 

Precipitation and Temperature data were obtained from the Utah Climate Center of Utah State 

University (Center, 2019). For a dataset to be included in my analysis, they needed to meet a set 

of criteria. I developed these criteria based on previous research to ensure data quality data and 

to minimize missing data (Hargis, 2014). 

Criteria for dataset (e.g., site) selection: Each site must have 

• Approximately 60 years or more of data available 
 

• Daily data 
 

• Must be from a valid or accredited source 
 

Discharge gage data are presented as daily averages, in cubic feet per second. Temperature 

data were obtained as daily max and minimum and calculated as daily average in degrees 

centigrade. Precipitation data were obtained as daily average values, but I calculated yearly 

precipitation data in millimeters per year to provide mathematical continuity during 

decomposition. A summary of the datasets is provided in Table 4.2-1. 

Managing and choosing a precipitation data reduction method was challenging. Before I 

chose total yearly precipitation depth as my method for processing, I used total quarterly 

precipitation to satisfy the continuity requirement of EMD. When I plotted and analyzed the data 

using EMD, this method did not show the expected results due to rapidly changing crests and 

troughs in the signal. This was because the precipitation data were so sparse and precipitation in 

a given quarter could be very low and the data can appear to be noisy. Results from the quarterly 
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EMD datasets are shown in Appendix B. Based on this preliminary effort, I used total yearly 

precipitation as the reduction basis for this data set.  

Table 4.2-1: Summary of Data 

Dataset Gage Name Beginning 
Date Ending Date Appendix 

Stream 
Discharge Flaming Gorge Flow 10/1/1946 3/15/2019 B.1 

 Jensen Flow 10/1/1946 5/16/2018 B.2 

 
Little Snake Lily 

Flow 10/1/1921 5/2/2018 B.3 

 Yampa Maybel Flow 5/1/1916 5/21/2018 B.4 
     

Yearly 
Precipitation 

Ouray Yearly 
Precipitation 6/1/1941 5/31/2018 B.7 

 
Jensen Yearly 
Precipitation 3/27/1925 5/31/2018 B.8 

     
Temperature Jensen Temperature 10/1/1939 6/15/2018 B.9 

 Vernal Temperature 7/27/1900 4/30/2018 B.10 
     

 

 Missing Data Analysis 

For the EMD algorithm to properly work, continuous data must be provided. However, 

there were several gaps from missing data in the temperature and precipitation datasets. Previous 

work, showed that missing values with gap periods up to a year have little impact on the overall 

EMD/IMF interpolation (Hargis, 2014). For missing daily values in the temperature dataset, I 

linearly interpolated between missing days. Missing daily values in the precipitation dataset were 

assumed to be zero, when entire years were missing, the yearly precipitation was linearly 

interpolated. Linear interpolation is the simplest and often least accurate method for replacing 

these data, however, previous research showed that these shorter gaps, less than 1-year, have 
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limited impact when filled with linear data. Because of these minimal impacts, I selected linear 

interpolation for the ease of implementation. Interpolation introduces error into the data sets 

because the interpolated data do not represent reality, however, since the signals I am attempting 

to analyze have a period of 5 to 7 years, small gaps in data do not affect the analysis. Table 4.3-1 

describes the amount of missing data within this study. 

Table 4.3-1: Table of Missing Values 

Dataset Gage Name Beginning 
Date Ending Date Missing 

Values Completeness 

Stream 
Discharge Flaming Gorge Flow 10/1/1946 3/15/2019 0 100% 

 Jensen Flow 10/1/1946 5/16/2018 0 100% 

 
Little Snake Lily 

Flow 10/1/1921 5/2/2018 0 100% 

 
Yampa Maybel 

Flow 5/1/1916 5/21/2018 0 100% 

      
Yearly 

Precipitation 
Ouray Yearly 
Precipitation 6/1/1941 5/31/2018 5329 81% 

 
Jensen Yearly 
Precipitation 3/27/1925 5/31/2018 3659 89% 

      
Temperature Jensen Temperature 10/1/1939 6/15/2018 557 98% 

 Vernal Temperature 7/27/1900 4/30/2018 4035 91% 
 

The IMF’s show the gap, with each subsequent IMF also showing the gap from the 

original dataset. Essentially, then analyzing the resulting IMFs, the values in the gap regions are 

not valid, these effects extend a little into the actual data.  

I compared IMFs resulting from decomposing the full data set (large gap at the beginning) 

and a shortened data set (does not include the gaps). Figure 4.3.1-3 shows the IMFs that result 

from decomposing a shortened Ouray dataset that does not include the first three years of data or 

the 9 years of missing data. Figure 4.3.1-3 shows, by comparing the long dataset and the 
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shortened dataset, several differences. First, the shape of the IMF near the missing data is 

affected as seen in IMF 3 of the shortened dataset. Next, the magnitudes vary slightly, which can 

be seen by comparing IMF 2 and 3 of the long and short datasets. Additionally, the rate of 

change and concavity of the two residuals differ. The concavity of the long dataset residual may 

suggest that an event occurred causing a peak in the data. The short dataset would not mislead 

researchers to make that assumption. 

Overall, I suggest that datasets not include early data if large gaps exist since the 

mathematical error introduced into the IMFs may not be worth the few more years of additional 

data. If gaps bisect a dataset, a method of interpolation could be a viable solution to save 

physical meaning (Nelsen, Williams, Williams, & Berrett, 2018). While I used linear 

interpolation, since my gaps were relatively small compared to the periods I was interested in, 

more advanced data imputation methods could be used. 

 

Figure 4.3.1-1: Complete Ouray Precipitation Dataset 
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Figure 4.3.1-2: Complete Ouray Precipitation Dataset Decomposition Showing Missing 
Data Gaps Being Transferred from the Original Dataset to the IMFs and Then the 

Residual 
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Figure 4.3.1-3: Shortened Ouray Precipitation Dataset Decomposition Ignoring the 9 Years 
of Missing Data and Three Years of Corresponding Data Before the Gap. 
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5 MATLAB PROCESSING 

 MATLAB Code 

I created custom MATLAB functions for data processing and analysis. I created MATLAB 

scripts to customize figures and generate data reports. This code is contained in the appendix. 

The MATLAB scripts and code are generally divided into three groups: Data Readers, Data 

Processors, and Plotters. 

5.1.1 Data Readers 

The Data Readers are the first part the EMD analysis process. The Data Reader scripts 

convert previously prepared Excel files (.csv) into MATLAB Data (.mat) files. MATLAB data 

files, significantly speedup IMF and HHT processing since MATLAB can load a “.mat” file 

much faster than reading a “.csv” file.  

First, the Data Reader creates two string matrices containing names of the data used in the 

labeling and storage of data; a sample of the organization of each vector is shown in figure 5.1.1-

1 and figure 5.1.1-2. The first string matrix is containing names of gages and file names. The 

second matrix contains gage names and file locations used for loading and reading data.  

Next, the Data Reader references the string vectors to create a data structure which stores 

dates and associated measurements (Figure 5.1.1-3). In addition to the measurement data, this 
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data structure will store the IMFs and Residual data after processing. The complete Data Reader 

code is located in the appendix. 

Table 5.1.1-1: The First Matrix Contains a Column 
for Gage Name, Filename, and the 3-Letter 

Acronym for the Gage 
 

String Vector 1 

Column1 Column2 Column3 

Long 
Name File name Shortened Code Name 

 

Table 5.1.1-2: Matrix 2 is Organized as a Column of 
Gage Name, Data Location, and the 3-Letter 

Acronym for the Gage to Ease Coding 
 

String Vector 2 

Column1 Column2 Column3 

Long 
Name 

Exact Data 
Location 

Shortened Code 
Name 

 

Table 5.1.1-3: Data Reader Input File and Structure 

Data Structure 

Column1 Column2 Column3 Column4 

Dates Associated Data IMF Residual 

 

5.1.2 Data Processors 

The Data Processor, located in a MATLAB script called “MasterCode”, implements the 

EMD processing and generates the associated IMFs and HHTs. The code loads the previously 
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made “.mat” files, and creates a series of labels used for plotting (lines 11-16). Line 24 creates 

a matrix containing labels for plotting. The code then creates a series of plots. These plots are 

used as a check in order to see that loaded data matches the data from the Excel files. The code 

then decomposed each time series into IMFs and a Residual. These results are stored in the Data 

Structure and associated with the gage site and data dates. Next, the code analyzes the IMF and 

Residual signals with the HHT to generate time-frequency plots. Lines 44-70 create the IMFs, 

and HHTs for discharge data. I repeated this three-step process for each of the four data sets: 

Stream Discharge, Temperature, Quarterly Precipitation, and Yearly Precipitation. 

 
Figure 5.1.2-1 Mastercode, Generates the Associated IMFs and HHTs and Creates a Series 
of Labels Used in Plotting  

 

5.1.3 Data Plotters 

I wrote three Plotting Scripts to analyze data: CustomPloter, Residualcode, and 

DataNormalizer. I used each of these scripts to analyze data in different ways.  
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The CustomPlotter script, allows the user to select a data set, the IMFs of interest and plot 

just that part of the data. Some of the features of this script include: 

• Ability to Superimpose IMFs, as well as Residuals 

• Extract examined data and create a .mat file from it 

• Compare selected data to El Niño using but the ONI method and Magnitude 

Method 

• Save the figure 

 
Figure 5.1.3-1 Customplotter Input Settings  

 

The Residualcode allows for the plotting of data residuals from respective datasets. It also 

has the ability to compare residuals across the four datasets. The DataNormalizer is a companion 

script to Residualcode that normalizes data between -1 and 1 in order to give better idea of the 

rate of change that is occurring in the residuals since flow residuals tend to be much greater than 

the other dataset’s residuals 
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6 CHARACTERIZING THE RESULTS 

 Discussion of Results 

I applied EMD to all the listed datasets to qualitatively identify a relationship between 

IMFs and the El Niño ONI dataset. In these results, I present specific data sets which show 

extracted signals from the El Niño weather pattern in the Discharge, Temperature, and 

Precipitation datasets within the study area. 

The standard presentation of EMD components is to present the original signal at the top of 

a figure, with subsequent IMFs below, and finally the long-term residual at the bottom in vertical 

format. In this paper, the original signal will be presented in the figure, followed by the complete 

decomposition in the next figure, and selected IMFs of interest in the final figure. This pattern 

will be repeated for different data types and locations. 

 Discussion of Stream Discharge Results 

Figure 6.2-1 shows discharge data from Flaming Gorge Dam. From examining the dataset, 

several changes in the reservoir operations can be seen. The downstream stream gauge shows the 

highly varied natural flow of the Green River. Construction of the dam began in 1958 and the 

Green River’s diversion tunnel was completed by November 19, 1959. The Flaming Gorge Dam 

began operation after its completion in 1964. The period after the dam was completed until the 

mid-1990 represent a period where the dam was operated primarily to provide peak power,  
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Figure 6.2-1: Flaming Gorge Stream Discharge Data 

 

Figure 6.2-2 shows the EMD decomposition of the Flaming Gorge Dam discharge dataset 

that contains 11 IMFs and the residual. IMFs 7, 8 and 9 showed temporal patterns similar to the 

ONI. I summed these three IMFs and compared the resulting signal to the El Niño ONI dataset. 

The second to the bottom panel of Figure 6.2-3 shows the summed IMFs, while the bottom panel 

provides a visual comparison between the summed IMF’s and the El Niño ONI dataset. 

Qualitatively the ONI dataset matches the summed IMF.  

Visually there is good correlation between peaks in the ONI dataset and peaks in the 

composite IMF (Figure 6.2-3). The ONI often peaks before the IMF. This intuitively makes 
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sense, if a wet year is caused by El Niño, more water will come into the reservoir, therefore, 

more water will be discharged from the dam the following year. This reasoning suggesting that 

the El Niño signal within the streamflow IMFs is present despite the structure, and operational 

influences. La Niña is not as easily seen in the composite IMF, though traces are present. A 

possible explanation for this is that La Niña is often a drier year and the reservoir is discharging 

minimum flow, or being filled, partially hiding the presence of La Niña signal in the release data 

and thus in the composite IMF. 

 

Figure 6.2-2: Flaming Gorge Stream Discharge Complete EMD 
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Figure 6.2-3: Flaming Gorge Stream Discharge IMF 7, IMF 8, IMF 9 Super Imposed 
and Compared to El Niño ONI (Bottom Panel) 

 

The signal can be tracked downstream of Flaming Gorge Dam. One example of this is at 

the Jensen gage. This gage is important because it is approximately 40 miles south of the 

confluence of the Green River and the Yampa River and over 50 miles downstream of Flaming 

Gorge Dam. I created a composite IMF from IMF 7 and 8 (Figure 6.2-4). This composite IMF is 

similar to the ONI dataset suggesting that the El Niño signal that is passed through Flaming 
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Gorge Dam is preserved, even after mixing with the Yampa River influx. It may also be slightly 

strengthened, as the Yampa River is not impacted from dam operations and the signal is less 

attenuated.  

 

Figure 6.2-4: Jensen Streamflow Discharge IMF 7, IMF 8 Super Imposed and 
Compared to El Niño ONI (Bottom Panel) 
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 Discussion of Temperature Results 

The temperature dataset at Vernal was the longest dataset analyzed (Figure 6.3-1). In 

preparation for the EMD process, I arithmetically averaged daily high and low temperatures. I 

then decomposed these data as shown in Figure 6.3-2. Figure 6.3-3 shows a correlation between 

temperature variations and the ONI index. This relationship is interesting since both datasets 

correspond to variations of temperature. The figure shows that an increase in the ONI 

corresponds with increased temperatures in the composite dataset of IMF 9 and 10.  

Figure 6.3-4 is a comparison of the Vernal and Jensen temperature dataset residuals. It 

shows that the residuals represent an increase of approximately 1 degree centigrade over the last 

35 years and evidence of a cooling during the mid-70’s –80’s. 

 

Figure 6.3-1: Vernal Temperature Dataset  
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Figure 6.3-2: Decomposed Vernal Temperature Dataset 
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Figure 6.3-3: Vernal Temperature Decomposition Compared to the ONI Dataset (Bottom 
Panel). 
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Figure 6.3-4: Residual of Jensen and Vernal Datasets 
 

 Discussion of Precipitation Results 

Figure 6.4-1 shows the Jensen yearly precipitation dataset. Figure 6.4-2 shows the 

decomposed dataset, with Figure 6.4-3 showing the IMF/ONI comparison and the residuals 

(Figure 6.4-4).  

The IMF/ONI comparison (Figure 6.4-3) shows IMF 2 compared to the ONI dataset. The 

data comparison suggests that ONI peaks resulting from El Niño correlate to increases in 

precipitation near the Jensen area. The data also suggests that La Niña does not necessarily 

forecast a drier year, however, El Niño can be an indicator of a wetter year, especially if it is a 

very strong event. 
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The residuals shown below (Figure 6.4-4) suggest that yearly trend in total precipitation 

depth has increased over the 93-year span, though the area. However, annual averages may not 

exhibit this trend as several of the period IMFs are in the minimum part of their cycle in recent 

years, overriding the long-term trend.  

 
Figure 6.4-1: Jensen Yearly Precipitation Dataset. Every Point Is the Total Yearly 
Precipitation Depth 
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Figure 6.4-2: Jensen Precipitation Decomposition 
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Figure 6.4-3: Jensen IMF 2 Compared to the ONI Dataset (Bottom Panel) 
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Figure 6.4-4: Ourey and Jensen Precipitation Residuals 
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7 CONCLUSIONS 

By applying the EMD method to an area with a control group of stream gages (little 

anthropogenic influence) and an experimental group of stream gages (heavily regulated) gave 

much insight into how dam operations affect signals from natural phenomenon. By using EMD, 

I was able to extract the El Niño signal from streamflow discharge data and compare it to the 

ONI dataset. Additionally, I tracked the El Niño signal through the dam and downstream. This 

signal was preserved despite the mixing of rivers, the detention structure (dam), and dam 

discharge operations. 

Using EMD analysis I showed a a strong positive correlation between yearly 

precipitation, and daily average temperature IMFs to El Niño demonstrating how this global 

process (El Niño) can affect local temperature patterns. The residual or long-term trend in the 

temperature data represents an increase of 1 degree centigrade over the last 35 years and 

evidence of a cooling during the mid-70’s –80’s. The long-term trend in precipitation suggests 

the region that precipitation is increasing. This is not seen in the composite data set (measured 

data) as a number of IMFs are in the minimum part of their cycles, masking the trend. It does 

suggest that precipitation may increase in the future if the long-term trend continues and the 

IMFs move towards the maximums in their cycles.  
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8 FUTURE WORK 

 Recommendations 

One of the limitations for this study is that there are not many gages in the area with the 

criteria of quality data as defined in section 4.2. 

• Must have ~60 years or more of data available 

• Must have daily data 

• Must be a valid or accredited source 

Trends were not easily seen in data sets smaller than 50 years long due to edge effects 

(boundary error). Though it is necessary to have continuous data, the guidelines above are based 

on previous research and not hard rules. It’s necessary to research the effects of boundary errors 

on IMFs and residuals. Additionally, it is will be of interest to further research how missing data 

affects IMFs and residuals. By understanding edge effects and missing data, the criteria above 

can be scientifically founded. 

As more data becomes available, ONI and gage, it may be worthwhile to apply this method 

to the same area of study and record the differences. 

Since the issue is not having sufficient long data sets, using Palaeohydrology to infer 

historical hydrological data and applying the EMD method may reveal interesting trends. 

Climate models could also be used to generate past climate data in order to estimate ONI values. 
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Another recommendation is the use of machine learning to recognize patterns within the 

IMFs and fill missing data gaps. This is more feasible than attempting to fill the original data 

gaps since IMFS are more likely to contain recognizable patterns. 
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APPENDIX A. MATLAB CODE 

A.1  Custom Plotter 

1   %Variable key for selecting "n" or "m". 

2   %n is a variable used to select a specific dataset out of the data 

3   %structure. "n" has been used to distinguish flow data from "m" which is 

4   %temperature data 

5    

6   %Flow Data Key 

7   %{  

8   Max of 10 sets 

9   n=1 "Flaming Gorge"; 

10  n=2 "Jensen"; 

11  n=3 "Little Snake Lily"; 

12  n=4 "Yampa Maybel"; 

13  Commented Out 

14  n=5 "Yampa Deerlodge"; 

15  n=6 "Yampa Craig"; 

16  n=7 "Green River Ouray" 

17  %} 
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18   

19  %Temperature Data Key 

20  %{  

21  10 offset 

22  n=11 "Jensen"; 

23  n=12 "Vernal"; 

24  Commented Out 

25  n=13 "Grand Junction"; 

26  n=14 "Flaming Gorge"; 

27  n=15 "Maybel"; 

28  n=16 "Craig"; 

29  %} 

30   

31  %Precipitation Quarterly Data Key 

32  %{  

33  20 offset 

34  n=21 "Ourey"; 

35  n=22 "Jensen"; 

36  Commented Out 

37  n=23 "Maybel"; 

38  n=24 "Flaming Gorge"; 

39  n=25 "Craig"; 

40  %} 
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41   

42  %Precipitation Yearly Data Key 

43  %{  

44  30 offset 

45  n=31 "Ourey"; 

46  n=32 "Jensen"; 

47  Commented Out 

48  n=33 "Maybel"; 

49  n=34 "Flaming Gorge"; 

50  n=35 "Craig"; 

51  %} 

52   

53  %Custom Plot creator 

54  %Must run Mastercode first 

55  %The user must input n,V, and SuperPosition=1/0 Res=1/0 

56  %When working with flow data select n value associated with the data of 

57  %interest, enter the value of V as a vector with the imf datasets of 

58  %interest and if user desires to impose the datasets on eachother and plot 

59  %make the value of SuperPosition 1, otherwise SuperPosition should be 0 

60  %For best practice, only use one of the codes at a time. 

61   

62   

63  %Data Plotting Settings 
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64   

65  V=[9,10];      %Which IMF datasets do you want to look at, 

66  n=12;          %Which area are you interested in- Key above 

67  SuperPosition=1;    %Superimpose IMFs of interest Y(1)/N(0) 

68  Res=0;         %Residual visible Y(1)/ N(0)  

69  Dataextract=0;     %Saves Superimposed Vector 

70  NinoRef=1;       %Displays barchart showing known El Nino Years 

71  NinoMethod=0;      %Custom Plotter using ONI (0) or Nino intensity (1) 

72  ResidualAdd=0;     %Add Residual to superimposed Y(1)/ N(0) 

73  SaveFigure=1;      %Saves the Current Figure 

74   

75   

76  %bar(Ninodata.date,Ninodata.flow) 

77  %When Extracting Data, import by hand and rename workspace name 

78  %figure 

79  %plot(ExtractDataFlow(:,1),ExtractDataFlow(:,2),ExtractDataTemp(:,1),.. 

80  %ExtractDataTemp(:,2)) 

81  %datetick('x',11) 

82  if NinoMethod==0; 

83  %___________________________Using ONI Data___________________________ 

84  if n<=10 

85    Comparex=NinoONIdata.date; 

86    Comparey=NinoONIdata.flow; 
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87    Cplotimf(V,Gagedata(n).date,Gagedata(n).flow,Gagedata(n).imf,... 

88      Gagedata(n).resid,... 

89    Gage1(n,1),Lab,SuperPosition,Res,NinoRef,Comparex,Comparey,... 

90    Dataextract,ResidualAdd,SaveFigure) 

91  elseif n>10 && n<=20 

92    n=n-10; 

93    Comparex=NinoONIdata.date; 

94    Comparey=NinoONIdata.flow; 

95    Cplotimf(V,Tempdata(n).date,Tempdata(n).flow,Tempdata(n).imf,... 

96      Tempdata(n).resid,... 

97    Temp1(n,1),Lab,SuperPosition,Res,NinoRef,Comparex,Comparey,... 

98    Dataextract,ResidualAdd,SaveFigure) 

99  elseif n>20 && n<=30 

100  n=n-20; 

101    Comparex=NinoONIdata.date; 

102    Comparey=NinoONIdata.flow; 

103    Cplotimf(V,Precipdata(n).date,Precipdata(n).flow,Precipdata(n).imf,... 

104      Precipdata(n).resid,... 

105    Precip1(n,1),Lab,SuperPosition,Res,NinoRef,Comparex,Comparey,... 

106    Dataextract,ResidualAdd,SaveFigure) 

107  elseif n>30 && n<=40 

108  n=n-30; 

109    Comparex=NinoONIdata.date; 
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110    Comparey=NinoONIdata.flow; 

111    Cplotimf(V,PrecipYearlydata(n).date,PrecipYearlydata(n).flow,... 

112      PrecipYearlydata(n).imf,PrecipYearlydata(n).resid,... 

113    PrecipY1(n,1),Lab,SuperPosition,Res,NinoRef,Comparex,Comparey,... 

114    Dataextract,ResidualAdd,SaveFigure) 

115   

116  end 

117  else 

118    NinoMethod==1; 

119  %______________________________Nino 

Magnitude______________________________ 

120   

121  if n<=10 

122    Comparex=Ninodata.date; 

123    Comparey=Ninodata.flow; 

124    Cplotimf(V,Gagedata(n).date,Gagedata(n).flow,Gagedata(n).imf,... 

125  Gagedata(n).resid,... 

126    Gage1(n,1),Lab,SuperPosition,Res,NinoRef,Comparex,Comparey,... 

127    Dataextract,ResidualAdd,SaveFigure) 

128  elseif n>10 && n<=20 

129    n=n-10; 

130    Comparex=Ninodata.date; 

131    Comparey=Ninodata.flow; 
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132    Cplotimf(V,Tempdata(n).date,Tempdata(n).flow,Tempdata(n).imf,... 

133    Tempdata(n).resid,... 

134    Temp1(n,1),Lab,SuperPosition,Res,NinoRef,Comparex,Comparey,... 

135    Dataextract,ResidualAdd,SaveFigure) 

136  elseif n>20 && n<=30 

137  n=n-20; 

138    Comparex=Ninodata.date; 

139    Comparey=Ninodata.flow; 

140    Cplotimf(V,Precipdata(n).date,Precipdata(n).flow,Precipdata(n).imf,... 

141    Precipdata(n).resid,... 

142    Precip1(n,1),Lab,SuperPosition,Res,NinoRef,Comparex,Comparey,... 

143    Dataextract,ResidualAdd,SaveFigure) 

144  elseif n>30 && n<=40 

145  n=n-30; 

146    Comparex=Ninodata.date; 

147    Comparey=Ninodata.flow; 

148    Cplotimf(V,PrecipYearlydata(n).date,PrecipYearlydata(n).flow,... 

149    PrecipYearlydata(n).imf,PrecipYearlydata(n).resid,... 

150    PrecipY1(n,1),Lab,SuperPosition,Res,NinoRef,Comparex,Comparey,... 

151    Dataextract,ResidualAdd,SaveFigure) 

152   

153  end 

154   
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155  end 

156   

157   

158  

%_________________________FUNCTION____________________________________ 

159   

160  function Cplotimf(A,Date,Flow,IMF,Residual,Name,Label,SuperPosition,... 

161    Res,Nino,Compx,Compy,extract,ResidualAdd,SaveFigure) 

162  figure1=figure('Position',[0,0,1024,1200]); 

163  imfrows=length(A); 

164  r=Res; 

165  Super=SuperPosition; 

166  SP=0; 

167   

168   

169  %This section Plots the original time series signal 

170  subplot(imfrows+1+Super+r+Nino,1,1); 

171  plot(Date,Flow); 

172  dateFormat=11; 

173  datetick('x',dateFormat) 

174  title(strcat('\fontsize{14}',Name+Label(1,3))); 

175  ylabel('Signal'); 

176   
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177   

178  %This section sets the size and plots the IMFs 

179  for i=1:imfrows 

180    j=A(1,i); 

181    subplot(imfrows+1+Super+r+Nino,1,i+1); 

182    plot(Date,IMF(:,j)); 

183    ylabel(strcat('IMF '+ string(j))); 

184    dateFormat=11; 

185    datetick('x',dateFormat); 

186  end 

187   

188  %Option for displaying Residual 

189  if r==1 

190    subplot(imfrows+1+Super+r+Nino,1,imfrows+1+r); 

191    plot(Date,Residual); 

192    ylabel('Residual'); 

193    dateFormat=11; 

194    datetick('x',dateFormat); 

195  end 

196   

197  %Option for adding IMFs 

198  if SuperPosition == 1 

199    %Adding the Residual to the IMF 
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200    if ResidualAdd==0  

201      for i=1:imfrows 

202      j=A(1,i); 

203      SP=SP+IMF(:,j); 

204      end 

205    %Saving Superimposed Datasets 

206    if extract==1 

207      ExtractData=[Date,SP]; 

208      save('J:\Research\EMD\Extracts\'+Name+' IMF '+mat2str(A)+'.mat',... 

209        'ExtractData')   

210    end   

211       

212    subplot(imfrows+1+Super+r+Nino,1,imfrows+1+r+Super); 

213    plot(Date,SP); 

214    subplot(imfrows+1+Super+r+Nino,1,imfrows+1+r+Super); 

215    plot(Date,SP);  

216    subplot(imfrows+1+Super+r+Nino,1,imfrows+1+r+Super); 

217    plot(Date,SP); 

218    ylabel(strcat('IMF '+ string(A))); 

219    dateFormat=11; 

220    datetick('x',dateFormat); 

221     

222    elseif ResidualAdd==1 
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223      for i=1:imfrows 

224      j=A(1,i); 

225      SP=SP+IMF(:,j); 

226      end 

227      SP=SP+Residual; 

228       

229      if extract==1 

230      ExtractData=[Date,SP]; 

231      save('J:\Research\EMD\Extracts\'+Name+' IMF '+mat2str(A)+'.mat',... 

232        'ExtractData') 

233      end  

234       

235    subplot(imfrows+1+Super+r+Nino,1,imfrows+1+r+Super); 

236    plot(Date,SP); 

237     

238    ylabel(strcat('IMF '+ string(A)+' Residual')); 

239    dateFormat=11; 

240    datetick('x',dateFormat); 

241    end 

242   

243  else 

244     

245  end 
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246   

247  if Nino==1 

248    if SP==0 

249      SP=IMF(:,A); 

250    end 

251    subplot(imfrows+1+Super+r+Nino,1,imfrows+1+r+Super+Nino); 

252    plot(Date,SP); 

253    ylabel('El Nino Comparison'); 

254    datetick('x',dateFormat); 

255    %yyaxis left 

256    hold on 

257    yyaxis right 

258    bar(Compx,Compy,'FaceAlpha',.80); 

259    %plot(Compx,Compy); 

260    %El Nino Reference 

261    %El Nino event is efined by ONI of +/- 0.5 

262      TimeRef=[min(Date);max(Date)]; 

263      ELNINO=[0.5;0.5]; 

264      LANINA=[-0.5;-0.5]; 

265      plot(TimeRef,ELNINO,'-.','Color','red','MarkerSize',0.1); 

266      plot(TimeRef,LANINA,'-.','Color','blue','MarkerSize',0.1); 

267    ylabel('El Niño ONI Signal') 

268    dateFormat=11; 
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269    datetick('x',dateFormat); 

270    hold off 

271  end  

272   

273  if SaveFigure==1 

274    Folder='J:\Research\Writing\Figures\Custom Plots\'; 

275    Tar=strcat(Folder,Name,' IMF ',mat2str(A)); 

276    print(gcf,Tar,'-dpng','-r1000') 

277  end 

278   

279  end 

280   

281   

282  

 

 

A.2  Data Interpolator 

1   clear all 

2    

3   %load('FlowData.mat'); 

4   load('TempData.mat'); 

5   %load('PrecipData.mat'); 
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6   %load('NinoData.mat'); 

7    

8   St=Tempdata; 

9   t=1; 

10  n=1; 

11   

12  %for i=1:length(Gage1) 

13  for i=5:6 

14     

15  %for i=1:1   

16     

17    ax=St(i).date(1); 

18    b=length(St(i).date); 

19    cx=St(i).date(b); 

20    Intx=ax:cx; 

21    Inty=interp1(St(i).date,St(i).flow,ax:t:cx,'linear'); 

22     

23    Data1=[St(i).date,St(i).flow]; 

24    Data2=[Intx.',Inty.']; 

25    [DataFinal(i).original,DataFinal(i).Int]=ReadGage(Data1,Data2); 

26     

27    %figure(i)=figure 

28    plot(St(i).date,St(i).flow,"o") 
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29      title("Original"+( i)); 

30    hold on 

31     

32    plot(Intx,Inty,"*") 

33      title("Interpolate"+( i)); 

34    hold off 

35     

36  %Precipdata(i).date=x   

37  %Precipdata(i).flow=y 

38    %} 

39  end 

40   

41   

42  %Flow and Date importation 

43  function [days, flow]=ReadGage(Data1,Data2) 

44  days=Data1; %Importing Date data 

45  flow=Data2; %Importing Flow Data 

46  end 

 

 

A.3  Data Normalizing Code 

1   %This example normalize is used to compare trends between datasets 
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2   %In this case Yampa Deerlodge flow IMF [12] and Grand Junction IMF [11] 

3   SaveFigure=0; 

4    

5   figure 

6   x1=ExtractDataFlow(:,1) 

7   y1=ExtractDataFlow(:,2) 

8   y1Max=max(ExtractDataFlow(:,2)) 

9   y1Min=min(ExtractDataFlow(:,2)) 

10  y1Range=y1Max-y1Min 

11  y1Norm=(y1-y1Min)/y1Range 

12   

13  x2=ExtractDataTemp(:,1) 

14  y2=ExtractDataTemp(:,2) 

15  y2Max=max(ExtractDataTemp(:,2)) 

16  y2Min=min(ExtractDataTemp(:,2)) 

17  y2Range=y2Max-y2Min 

18  y2Norm=(y2-y2Min)/y2Range 

19   

20   

21  plot(x1,y1Norm,x2,y2Norm) 

22  datetick('x',11) 

23   

24  if SaveFigure==1 
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25    Folder='J:\Research\Writing\Figures\Custom Plots\'; 

26    Tar=strcat(Folder,Name,' IMF ',mat2str(A)); 

27    print(gcf,Tar,'-dpng','-r1000') 

28  end 

 

 

A.4  Master Code 

1   % code to process Green River and Yampa River data using EMD to determine 

2   % correlations and other issues 

3   % Need to run "ReadFlowData" first to read the data from the Excel 

4   % spreadsheet and save it in the "FlowData.mat" file 

5    

6   %Requires Clear all to keep the figure counter correct 

7   clear all 

8    

9   %Data Loading, 

10  %This section loads premade datasets currently Flow, and Temperature Data 

11  load('FlowData.mat'); 

12  load('TempData.mat'); 

13  load('PrecipData.mat'); 

14  load('PrecipYearlyData.mat'); 

15  load('NinoData.mat'); 
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16  load('NinoONIData.mat'); 

17   

18  %IMF Control: Sift Relative Tolerence 

19  Tol=0.2; 

20   

21  % Array for Figure Lables  

22  %This matrix will contain the labels used for any figures 

23   

24  Lab=["Date","Flow (cfs)"," Empirical Mode Decomposition",... 

25  " Hilbert Spectrum","Temp Figure"]; 

26   

27  % Comptue IMFs using EMD 

28  % Best Tolerances are 0.02 and .001, unstable afterwards (Crash) 

29   

30  % ___________________________Flow Gage 

Data________________________________ 

31  %Ploting Flow Data 

32  %This Plots the initial flow time series data 

33  %Changing the x-axis to a year format 

34   

35  %{ 

36  for i=1:length(Gage1) 

37  %for i=1:3 
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38    PlotFlow(Gagedata(i).date,Gagedata(i).flow,Gage1(i,1),i) 

39    dateFormat = 'yy'; 

40  end 

41  %} 

42   

43  %EMD for flow data 

44  for i=1:length(Gage1) 

45  %for i=1:3 

46    [imf, resid, info]=emd(Gagedata(i).flow,'Interpolation','pchip',... 

47      'SiftRelativeTolerance',Tol,'MaxNumIMF',500,'SiftmaxIterations',... 

48      900);%,'Display',0); 

49    Gagedata(i).imf=imf; 

50    Gagedata(i).resid=resid;   

51  end 

52   

53   

54  %Plotting Flow Data IMF 

55  %Calls the User defined 'PlotIMF' function and applies it to Flow Data 

56  for i=1:length(Gage1) 

57  %for i=1:3 

58    PlotIMF(Gagedata(i).date,Gagedata(i).flow,Gagedata(i).imf,... 

59      Gagedata(i).resid,... 

60    Gage1(i,1),Lab); 
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61  end 

62   

63   

64  %Ploting HHT 

65  for i=1:length(Gage1) 

66  %for i=1:3 

67    h = findobj('type','figure'); 

68    n = length(h); 

69    PlotHHT(Gagedata(i).imf,Gage1(i,1),Lab) 

70  end  

71    

72  %} 

73   

74  

%______________________________Temperature_________________________________ 

75  %Ploting Flow Data 

76  %This Plots the initial flow time series data 

77  %Changing the x-axis to a year format 

78  %{ 

79  for i=1:size(Temp1,1) 

80  %for i=1:3 

81    PlotFlow(Tempdata(i).date,Tempdata(i).flow,Temp1(i,1),i); 

82    dateFormat = 'yy'; 
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83  end 

84  %} 

85  %EMD for Temperature Data 

86   

87   

88  for i=1:size(Temp1,1) 

89    [imf, resid, info]=emd(Tempdata(i).flow,'Interpolation','pchip',... 

90      'SiftRelativeTolerance',Tol,'MaxNumIMF',500,'SiftmaxIterations',... 

91      900);%,'Display',0); 

92    Tempdata(i).imf=imf; 

93    Tempdata(i).resid=resid;   

94  end 

95   

96   

97  %Plotting Temperature based IMF 

98  %for i=1:length(Temp1) 

99  for i=1:2 

100   PlotIMF(Tempdata(i).date,Tempdata(i).flow,Tempdata(i).imf,... 

101     Tempdata(i).resid,... 

102   Temp1(i,1),Lab); 

103  end 

104   

105   
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106  %Ploting HHT 

107  for i=1:size(Temp1,1) 

108  %for i=1:3 

109    h = findobj('type','figure'); 

110    n = length(h); 

111    PlotHHT(Tempdata(i).imf,Temp1(i,1),Lab) 

112  end  

113   

114  %} 

115   

116   

117   

118  %___________________Precipitation_Quarterly________________________________ 

119  %Ploting Precipitation Data 

120  %This Plots the initial flow time series data 

121  %Changing the x-axis to a year format 

122  %{ 

123  for i=1:size(Precip1,1) 

124  %for i=1:3 

125    PlotFlow(Precipdata(i).date,Precipdata(i).flow,Precip1(i,1),i); 

126    dateFormat = 'yy'; 

127  end 

128  %} 
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129   

130  %EMD for Quarterly Precipitation Data 

131   

132  %for i=1:length(Precip1) 

133  for i=1:size(Precip1,1) 

134    [imf, resid, info]=emd(Precipdata(i).flow,'Interpolation','pchip',... 

135      'SiftRelativeTolerance',Tol,'MaxNumIMF',500,'SiftmaxIterations',... 

136    900);%'Display',0); 

137    Precipdata(i).imf=imf; 

138    Precipdata(i).resid=resid;   

139  end 

140   

141   

142  %Plotting Quarterly Precip based IMF 

143  %for i=1:length(Precip1) 

144  for i=1:size(Precip1,1) 

145   PlotIMF(Precipdata(i).date,Precipdata(i).flow,Precipdata(i).imf,... 

146     Precipdata(i).resid,... 

147   Precip1(i,1),Lab); 

148  end 

149   

150   

151  %Ploting HHT 
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152  for i=1:size(Precip1,1) 

153  %for i=1:3 

154    h = findobj('type','figure'); 

155    n = length(h); 

156    PlotHHT(Precipdata(i).imf,Precip1(i,1),Lab) 

157  end  

158   

159  %} 

160   

161  

%___________________Precipitation_Yearly___________________________________ 

162  %Ploting Precipitation Data 

163  %This Plots the initial flow time series data 

164  %Changing the x-axis to a year format 

165  %{ 

166  for i=1:size(PrecipY1,1) 

167  %for i=1:3 

168    PlotFlow(PrecipYearlydata(i).date,PrecipYearlydata(i).flow,... 

169  PrecipY1(i,1),i); 

170    dateFormat = 'yy'; 

171  end 

172  %} 

173   
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174  %EMD for Yearly Precip Data 

175  for i=1:size(PrecipY1,1) 

176    [imf, resid, info]=emd(PrecipYearlydata(i).flow,'Interpolation',... 

177      'pchip','SiftRelativeTolerance',Tol,'MaxNumIMF',500,... 

178      'SiftmaxIterations',900);%'Display',0); 

179    PrecipYearlydata(i).imf=imf; 

180    PrecipYearlydata(i).resid=resid;   

181  end 

182   

183   

184  %Plotting Yearly Precip Data based IMF 

185  for i=1:size(PrecipY1,1) 

186   PlotIMF(PrecipYearlydata(i).date,PrecipYearlydata(i).flow,... 

187     PrecipYearlydata(i).imf,PrecipYearlydata(i).resid,... 

188   PrecipY1(i,1),Lab); 

189  end 

190   

191   

192  %Ploting Yearly Precip Data HHT 

193  for i=1:size(PrecipY1,1) 

194    h = findobj('type','figure'); 

195    n = length(h); 

196    PlotHHT(PrecipYearlydata(i).imf,PrecipY1(i,1),Lab) 
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197  end  

198   

199  %} 

200   

201   

202   

203   

204  

%______________________________Functions___________________________________ 

205   

206  %Ploting Flow vs Date 

207  function PlotFlow(days,flow,Name,number) 

208  figure('Name',strcat(Name,'Flow Data'),'NumberTitle','off'); 

209  plot(days, flow); 

210  %This can be changed to 'dd/mm/yyy' in order to plot data of specific dates 

211  dateFormat = 'yy';  

212  datetick('x',dateFormat); 

213    xlabel('Time (Years)'); 

214    ylabel('Signal'); 

215    title(strcat(Name)); 

216    %%Comment to stop file Creation 

217    Tar=strcat('J:\Research\Writing\Figures\',Name); 

218  %print(gcf,Tar,'-dpng','-r1000') 
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219  end 

220   

221  %Plotting all IMFs 

222  function PlotIMF(Date,Flow,IMF,Residual,Name,Label) 

223  %Dimensioning Matrix 

224  %x1=1:length(Flow); 

225  imfrows=size([IMF],2); 

226  figure1=figure('Position',[0,0,1024,1200],'Name',Name); 

227   

228   

229  %Plots the signal (Flow as time series) 

230  subplot(imfrows+2,1,1); 

231  plot(Date,Flow); 

232  dateFormat=11; 

233  datetick('x',dateFormat) 

234  title(strcat('\fontsize{14}',Name+Label(1,3))); 

235  ylabel('Signal'); 

236   

237  for i=1:imfrows 

238    subplot(imfrows+2,1,i+1); 

239    plot(Date,IMF(:,i)); 

240    ylabel(strcat('IMF '+ string(i))); 

241    dateFormat=11; 
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242    datetick('x',dateFormat) 

243  end 

244  subplot(imfrows+2,1,imfrows+2); 

245  plot(Date,Residual); 

246  ylabel('Residual'); 

247  dateFormat=11; 

248  datetick('x',dateFormat) 

249    %%Comment to stop file Creation 

250    Tar=strcat('J:\Research\Writing\Figures\',Name,Label(1,3)); 

251  %print(gcf,Tar,'-dpng','-r1000') 

252  end 

253   

254  %Plotting HHTs 

255  function PlotHHT(IMF,Name,Label) %ActiveFigureNumber, 

256  figure('name',strcat(Name+Label(1,4))) 

257  hht(IMF); 

258  title(strcat(Name+Label(1,4))); 

259    %%Comment to stop file Creation 

260    Tar=strcat('J:\Research\Writing\Figures\',Name,Label(1,4)); 

261  %print(gcf,Tar, '-dpng','-r1000') 

262  end 

 

 



www.manaraa.com

76 

A.5  Read Flow Data 

1   % ReadFlowData  

2   % Reads flow data from Excel Spreadsheet and stores it in a .mat file 

3    

4   %Scraping data from Spreadsheets 

5   %Data has been historically imported from .csv format spreadsheets with 

6   %dates in 'excel serial number' format in column A and 

7   %flow values in column B 

8    

9   clear all 

10   

11  % Gage is matrix of meta data, column 1 is gage name, Column 2 is File 

12  % name, Column 3 is the 3 letter acronym for the gage 

13  Gage(1,1)="Flaming Gorge Flow";     Gage(1,2)="FG1.csv"; Gage(1,3)="FG1"; 

14  Gage(2,1)="Jensen Flow";         Gage(2,2)="GJ2.csv"; Gage(2,3)="GJ2"; 

15  Gage(3,1)="Little Snake Lily Flow";   Gage(3,2)="YL4.csv"; Gage(3,3)="LS1"; 

16  Gage(4,1)="Yampa Maybel Flow";      Gage(4,2)="YM5.csv"; Gage(4,3)="YM5"; 

17  %Gage(5,1)="Yampa Maybel Flow E";     Gage(5,2)="YME5.csv"; Gage(5,3)="YME5"; 

18  %Gage(5,1)="Yampa Deerlodge Flow";    Gage(3,2)="YD3.csv"; Gage(3,3)="YD3"; 

19  %Gage(6,1)="Yampa Craig Flow";      Gage(6,2)="YC6.csv"; Gage(6,3)="YC6"; 

20  %Gage(7,1)="Green River Ouray Flow";   Gage(7,2)="GO9.csv"; Gage(7,3)="GR9"; 

21   

22  % Gage1 is matrix of meta data, column 1 is gage name, Column 2 is File 
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23  % name, Column 3 is the 3 letter acronym for the gage  

24  Gage1=["Flaming Gorge Flow",   'J:\Research\EMD\Flow_Data\FG1.csv', "FG1"; ... 

25      "Jensen Flow",       'J:\Research\EMD\Flow_Data\GJ2.csv', "GJ2"; ... 

26      "Little Snake Lily Flow", 'J:\Research\EMD\Flow_Data\YL4.csv', "LS1"; ... 

27      "Yampa Maybel Flow",    'J:\Research\EMD\Flow_Data\YM5.csv', "YM5";]; 

28      %"Yampa Maybel Flow E",   'J:\Research\EMD\Flow_Data\YME5.csv', "YME5";]; 

29      %"Yampa Deerlodge Flow",  'J:\Research\EMD\Flow_Data\YD3.csv', "YD3"; ... 

30      %"Yampa Craig Flow",    'J:\Research\EMD\Flow_Data\YC6.csv', "YC6";]; 

31      %"Green River Ouray Flow", 'J:\Research\EMD\Flow_Data\GO9.csv', "GR9"]; 

32   

33    

34     

35  for i=1:length(Gage1) 

36  %for i=1:3  

37    [Gagedata(i).date, Gagedata(i).flow]=ReadGage(Gage1(i,2)); 

38  end 

39   

40   

41   

42  save('FlowData.mat'); 

43   

44   

45  %Functions below 
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46  %------------------------------------------------------------------------ 

47   

48  %Flow and Date importation 

49  function [days, flow]=ReadGage(filename) 

50  days=xlsread(filename, 'A:A'); %Importing Date data 

51  flow=xlsread(filename, 'B:B'); %Importing Flow Data 

52  end 

 

 

A.6  Reader Nino Data 

1   clear all 

2    

3   Nino(1,1)="El Nino";   

4   Nino(1,2)="J:\Research\EMD\El_Nino_Events\Nino.csv";   

5   Gage(1,3)="Nino"; 

6    

7   Nino1=["Nino", 'J:\Research\EMD\El_Nino_Events\Nino.csv', "Nino";]; 

8    

9   [Ninodata(1).date, Ninodata(1).flow]=ReadGage(Nino1(1,2)); 

10   

11  save('NinoData.mat'); 

12   
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13   

14   

15  %Functions below 

16  %------------------------------------------------------------------------ 

17   

18  %Flow and Date importation 

19  function [days, flow]=ReadGage(filename) 

20  days=xlsread(filename, 'A:A'); %Importing Date data 

21  flow=xlsread(filename, 'B:B'); %Importing Flow Data 

22  end 

 

 

A.7  Read ONI Data 

1   clear all 

2    

3   NinoONI(1,1)="El Nino ONI";  

NinoONI(1,2)="J:\Research\EMD\El_Nino_Events\NOAA.csv";  Gage(1,4)="Nino ONI"; 

4    

5   NinoONI=["Nino ONI", 'J:\Research\EMD\El_Nino_Events\NOAA.csv', "Nino ONI";]; 

6    

7   [NinoONIdata(1).date, NinoONIdata(1).flow]=ReadGage(NinoONI(1,2)); 

8    
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9   save('NinoONIData.mat'); 

10   

11   

12   

13  %Functions below 

14  %------------------------------------------------------------------------ 

15   

16  %Flow and Date importation 

17  function [days, flow]=ReadGage(filename) 

18  days=xlsread(filename, 'A:A'); %Importing Date data 

19  flow=xlsread(filename, 'E:E'); %Importing Flow Data 

20  end 

 

 

A.8  Read Precipitation Quarterly 

1   % ReadFlowData  

2   % Reads flow data from Excel Spreadsheet and stores it in a .mat file 

3    

4   %Scraping data from Spreadsheets 

5   %Data has been historically imported from .csv format spreadsheets with 

6   %dates in 'excel serial number' format in column A and 

7   %flow values in column B 
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8    

9   %Clear all used to clear cache of matlab to not save unneeded excess 

10  clear all 

11   

12  % Gage is matrix of meta data, column 1 is gage name, Column 2 is File 

13  % location, Column 3 is the 3 letter acronym for the gage 

14   

15   

16  Precip(1,1)="Ouray Precipitation";     

Precip(1,2)='J:\Research\EMD\Precipitation\OGP.csv'; Precip(1,3)="OGP"; 

17  Precip(2,1)="Jensen Precipitation";     

Precip(2,2)='J:\Research\EMD\Precipitation\JGP.csv'; Precip(2,3)="JGP"; 

18  %Precip(3,1)="Maybel Precipitation";     

Precip(3,2)='J:\Research\EMD\Precipitation\MGP.csv'; Precip(3,3)="MGP"; 

19  %Precip(4,1)="Flaming Gorge Precipitation"; 

Precip(4,2)='J:\Research\EMD\Precipitation\FGP.csv'; Precip(4,3)="FGP"; 

20  %Precip(5,1)="Craig Precipitation";     

Precip(5,2)='J:\Research\EMD\Precipitation\CGP.csv'; Precip(5,3)="CGP"; 

21   

22  % Gage1 is matrix of meta data, column 1 is gage name, Column 2 is File 

23  % name, Column 3 is the 3 letter acronym for the gage  

24  %This Matrix will used to Scrape the data from the spreadsheets 

25   
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26   

27  Precip1=["Ourey Precipitation",      'J:\Research\EMD\Precipitation\OGP.csv', "OGP";... 

28       "Jensen Precipitation",     'J:\Research\EMD\Precipitation\JGP.csv', "JGP";]; 

29  %{ 

30       "Maybel Precipitation",     'J:\Research\EMD\Precipitation\MGP.csv', "MGP";... 

31       "Flaming Gorge Precipitation",  'J:\Research\EMD\Precipitation\FGP.csv', "FGP";... 

32       "Craig Precipitation",      'J:\Research\EMD\Precipitation\CGP.csv', "CGP";]; 

33    %} 

34      

35  %The length function will only work if the matrix has more rows than 

36  %columns 

37   

38  %for i=1:length(Precip1) 

39  for i=1:2  

40    [Precipdata(i).date, Precipdata(i).flow]=ReadGage(Precip1(i,2)); 

41  end 

42   

43   

44   

45  save('PrecipData.mat'); 

46   

47   

48   
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49  %Functions below 

50  %------------------------------------------------------------------------ 

51   

52   

53  %Flow and Date importation 

54  function [days, temp]=ReadGage(filename) 

55  days=xlsread(filename, 'A:A'); %Importing Date data 

56  temp=xlsread(filename, 'B:B'); %Importing Flow Data 

57  end 

58   

 

 

A.9  Read Precipitation Data Yearly 

1   % ReadFlowData  

2   % Reads flow data from Excel Spreadsheet and stores it in a .mat file 

3    

4   %Scraping data from Spreadsheets 

5   %Data has been historically imported from .csv format spreadsheets with 

6   %dates in 'excel serial number' format in column A and 

7   %flow values in column B 

8    

9   %Clear all used to clear cache of matlab to not save unneeded excess 
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10  clear all 

11   

12  % Gage is matrix of meta data, column 1 is gage name, Column 2 is File 

13  % location, Column 3 is the 3 letter acronym for the gage 

14   

15   

16  PrecipY(1,1)="Ouray Yearly Precipitation";     

PrecipY(1,2)='J:\Research\EMD\PrecipitationYearly\OGYP.csv'; PrecipY(1,3)="OGYP"; 

17  PrecipY(2,1)="Jensen Yearly Precipitation";     

PrecipY(2,2)='J:\Research\EMD\PrecipitationYearly\JGYP.csv'; PrecipY(2,3)="JGYP"; 

18  %Precip(3,1)="Maybel Precipitation";     

Precip(3,2)='J:\Research\EMD\Precipitation\MGP.csv'; Precip(3,3)="MGP"; 

19  %Precip(4,1)="Flaming Gorge Precipitation"; 

Precip(4,2)='J:\Research\EMD\Precipitation\FGP.csv'; Precip(4,3)="FGP"; 

20  %Precip(5,1)="Craig Precipitation";     

Precip(5,2)='J:\Research\EMD\Precipitation\CGP.csv'; Precip(5,3)="CGP"; 

21   

22  % Gage1 is matrix of meta data, column 1 is gage name, Column 2 is File 

23  % name, Column 3 is the 3 letter acronym for the gage  

24  %This Matrix will used to Scrape the data from the spreadsheets 

25   

26   

27  PrecipY1=["Ouray Yearly Precipitation",      
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'J:\Research\EMD\PrecipitationYearly\OGYP.csv', "OGYP";... 

28       "Jensen Yearly Precipitation",     'J:\Research\EMD\PrecipitationYearly\JGYP.csv', 

"JGYP";]; 

29  %{ 

30       "Maybel Precipitation",     'J:\Research\EMD\Precipitation\MGP.csv', "MGP";... 

31       "Flaming Gorge Precipitation",  'J:\Research\EMD\Precipitation\FGP.csv', "FGP";... 

32       "Craig Precipitation",      'J:\Research\EMD\Precipitation\CGP.csv', "CGP";]; 

33    %} 

34      

35  %The length function will only work if the matrix has more rows than 

36  %columns 

37   

38  %for i=1:length(Precip1) 

39  for i=1:2  

40    [PrecipYearlydata(i).date, PrecipYearlydata(i).flow]=ReadGage(PrecipY1(i,2)); 

41  end 

42   

43   

44   

45  save('PrecipYearlyData.mat'); 

46   

47   

48   
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49  %Functions below 

50  %------------------------------------------------------------------------ 

51   

52   

53  %Flow and Date importation 

54  function [days, temp]=ReadGage(filename) 

55  days=xlsread(filename, 'A:A'); %Importing Date data 

56  temp=xlsread(filename, 'B:B'); %Importing Flow Data 

57  end 

58   

 

 

A.10  Reader Temperature Data 

1   % ReadFlowData  

2   % Reads flow data from Excel Spreadsheet and stores it in a .mat file 

3    

4   %Scraping data from Spreadsheets 

5   %Data has been historically imported from .csv format spreadsheets with 

6   %dates in 'excel serial number' format in column A and 

7   %flow values in column B 

8    

9   %Clear all used to clear cache of matlab to not save unneeded excess 
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10  clear all 

11   

12  % Gage is matrix of meta data, column 1 is gage name, Column 2 is File 

13  % location, Column 3 is the 3 letter acronym for the gage 

14  %This is just a means of organization, not necessary 

15   

16   

17  Temp(1,1)="Jensen Temperature";         

Temp(1,2)='J:\Research\EMD\Temperature\JGT.csv'; Temp(1,3)="JGT"; 

18  Temp(2,1)="Vernal Temperature";         

Temp(2,2)='J:\Research\EMD\Temperature\VGT.csv'; Temp(2,3)="VGT"; 

19  %Temp(3,1)="Grand Junction Temperature";     

Temp(3,2)='J:\Research\EMD\Temperature\GJT.csv'; Temp(3,3)="GJT"; 

20  %Temp(4,1)="Flaming Gorge Temperature";     

Temp(4,2)='J:\Research\EMD\Temperature\FGT.csv'; Temp(4,3)="FGT"; 

21  %Temp(5,1)="Maybel Temperature";         

Temp(5,2)='J:\Research\EMD\Temperature\MGT.csv'; Temp(5,3)="MGT"; 

22  %Temp(6,1)="Craig Temperature";         

Temp(6,2)='J:\Research\EMD\Temperature\CGT.csv'; Temp(6,3)="MGT"; 

23   

24  % Gage1 is matrix of meta data, column 1 is gage name, Column 2 is File 

25  % name, Column 3 is the 3 letter acronym for the gage  

26  %This Matrix will used to Scrape the data from the spreadsheets 
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27   

28   

29  Temp1=["Jensen Temperature",     'J:\Research\EMD\Temperature\JGT.csv', "JGT";... 

30      "Vernal Temperature",     'J:\Research\EMD\Temperature\VGT.csv', "VUT";]; 

31    %{ 

32      "Grand Junction Temperature", 'J:\Research\EMD\Temperature\GJT.csv', "GJT";... 

33      "Flaming Gorge Temperature",  'J:\Research\EMD\Temperature\FGT.csv', "FGT";... 

34      "Maybel Temperature",     'J:\Research\EMD\Temperature\MGT.csv', "MGT";... 

35      "Craig Temperature",      'J:\Research\EMD\Temperature\CGT.csv', "CGT";]; 

36    %} 

37       

38  %The length function will only work if the matrix has more rows than 

39  %columns 

40   

41  %for i=1:length(Temp1) 

42  for i=1:2  

43    [Tempdata(i).date, Tempdata(i).flow]=ReadGage(Temp1(i,2)); 

44  end 

45   

46   

47   

48  save('TempData.mat'); 

49   
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50   

51   

52  %Functions below 

53  %------------------------------------------------------------------------ 

54   

55   

56  %Flow and Date importation 

57  function [days, temp]=ReadGage(filename) 

58  days=xlsread(filename, 'A:A'); %Importing Date data 

59  temp=xlsread(filename, 'B:B'); %Importing Flow Data 

60  end 

61   

 

A.11  Residual Code 

1   %plot(Gagedata(1).date,Gagedata(1).resid) 

2    

3   Normalized=0; 

4    

5   Flow=1; 

6   Temperature=1; 

7   PrecipitationQuarter=1; 

8   PrecipitationYearly=1; 
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9   SaveFigure=0;   

10    if SaveFigure==1 

11      Name=''; 

12    end 

13     

14  Color=1; 

15   

16  figure(700); 

17    xlabel('Time (days)'); 

18    ylabel('Signal'); 

19    title('Residuals'); 

20   

21  hold on 

22  if Normalized==1 

23  if Flow==1  

24  for i=1:length(Gage1) 

25    

26    minF=min(Gagedata(i).resid); 

27    maxF=max(Gagedata(i).resid); 

28    rangeF=maxF-minF; 

29    resF=Gagedata(i).resid; 

30    %Next line normalizes data between 0 and 1 

31     
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32    %Individual Line Plot Options 

33    if Color==0 

34    plot(Gagedata(i).date,((resF-minF)/rangeF),'DisplayName',Gage1(i,1)) 

35    elseif Color==1 

36    %Color Option 

37    plot(Gagedata(i).date,((resF-minF)/rangeF),'b','DisplayName',Gage1(i,1)) 

38    end 

39  end 

40  end 

41   

42   

43  if Temperature==1 

44  for y=1:length(Temp1)   

45    %hold on 

46    minT=min(Tempdata(y).resid); 

47    maxT=max(Tempdata(y).resid); 

48    rangeT=maxT-minT; 

49    resT=Tempdata(y).resid; 

50    %Individual Line Plot Options 

51    if Color==0 

52    plot(Tempdata(y).date,((resT-minT)/rangeT),'DisplayName',Temp1(y,1)) 

53    %Color Option 

54    elseif Color==1 
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55    plot(Tempdata(y).date,((resT-minT)/rangeT),'r','DisplayName',Temp1(y,1)) 

56    %plot(Tempdata(y).date,Tempdata(y).resid,'DisplayName',Temp1(y,1)) 

57    end 

58  end 

59  end 

60   

61  if PrecipitationQuarter==1 

62  %for j=1:length(Precip1)   

63  for j=1:2 

64    %hold on 

65    minP=min(Precipdata(j).resid); 

66    maxP=max(Precipdata(j).resid); 

67    rangeP=maxP-minP; 

68    resP=Precipdata(j).resid; 

69    %Individual Line Plot Options 

70    if Color==0 

71    plot(Precipdata(j).date,((resP-minP)/rangeP),'DisplayName',Precip1(j,1)) 

72    %Color Option 

73    elseif Color==1 

74    plot(Precipdata(j).date,((resP-minP)/rangeP),'c','DisplayName',Precip1(j,1)) 

75    end 

76  end 

77  end 
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78   

79  if PrecipitationYearly==1 

80  %for k=1:length(PrecipY1) 

81  for k=1:2 

82    %hold on 

83    minPy=min(PrecipYearlydata(k).resid); 

84    maxPy=max(PrecipYearlydata(k).resid); 

85    rangePy=maxPy-minPy; 

86    resPy=PrecipYearlydata(k).resid; 

87    %Individual Line Plot Options 

88    if Color==0 

89    plot(PrecipYearlydata(k).date,((resPy-minPy)/rangePy),'DisplayName',PrecipY1(k,1)) 

90    %Color Option 

91    elseif Color==1 

92    plot(PrecipYearlydata(k).date,((resPy-minPy)/rangePy),'o','DisplayName',PrecipY1(k,1)) 

93    end 

94  end 

95  end 

96   

97  else 

98  if Flow==1  

99  for i=1:length(Gage1) 

100   



www.manaraa.com

94 

101    minF=min(Gagedata(i).resid); 

102    maxF=max(Gagedata(i).resid); 

103    rangeF=maxF-minF; 

104    resF=Gagedata(i).resid; 

105    %Next line normalizes data between 0 and 1 

106     

107    %Individual Line Plot Options 

108    if Color==0 

109    plot(Gagedata(i).date,Gagedata(i).resid,'DisplayName',Gage1(i,1)) 

110    elseif Color==1 

111    %Color Option 

112    plot(Gagedata(i).date,Gagedata(i).resid,'b','DisplayName',Gage1(i,1)) 

113    end 

114  end 

115  end 

116   

117   

118  if Temperature==1 

119  %for y=1:length(Temp1) 

120  for y=1:2  

121    %hold on 

122    minT=min(Tempdata(y).resid); 

123    maxT=max(Tempdata(y).resid); 
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124    rangeT=maxT-minT; 

125    resT=Tempdata(y).resid; 

126    %Individual Line Plot Options 

127    if Color==0 

128    plot(Tempdata(y).date,Tempdata(y).resid,'DisplayName',Temp1(y,1)) 

129    %Color Option 

130    elseif Color==1 

131    plot(Tempdata(y).date,Tempdata(y).resid,'r','DisplayName',Temp1(y,1)) 

132    %plot(Tempdata(y).date,Tempdata(y).resid,'DisplayName',Temp1(y,1)) 

133    end 

134  end 

135  end 

136   

137  if PrecipitationQuarter==1 

138  %for j=1:length(Precip1)   

139  for j=1:2 

140    %hold on 

141    minP=min(Precipdata(j).resid); 

142    maxP=max(Precipdata(j).resid); 

143    rangeP=maxP-minP; 

144    resP=Precipdata(j).resid; 

145    %Individual Line Plot Options 

146    if Color==0 



www.manaraa.com

96 

147    plot(Precipdata(j).date,Precipdata(j).resid,'DisplayName',Precip1(j,1)) 

148    %Color Option 

149    elseif Color==1 

150    plot(Precipdata(j).date,Precipdata(j).resid,'c','DisplayName',Precip1(j,1)) 

151    end 

152  end 

153  end 

154   

155  if PrecipitationYearly==1 

156  %for k=1:length(PrecipY1) 

157  for k=1:2 

158    %hold on 

159    minPy=min(PrecipYearlydata(k).resid); 

160    maxPy=max(PrecipYearlydata(k).resid); 

161    rangePy=maxPy-minPy; 

162    resPy=PrecipYearlydata(k).resid; 

163    %Individual Line Plot Options 

164    if Color==0 

165    plot(PrecipYearlydata(k).date,PrecipYearlydata(k).resid,'DisplayName',PrecipY1(k,1)) 

166    %Color Option 

167    elseif Color==1 

168    

plot(PrecipYearlydata(k).date,PrecipYearlydata(k).resid,'o','DisplayName',PrecipY1(k,1)) 
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169    end  

170  end 

171  end 

172  if SaveFigure==1 

173    Folder='J:\Research\Writing\Figures\Custom Plots\'; 

174    Tar=strcat(Folder,Name); 

175    print(gcf,Tar,'-dpng','-r1000') 

176  end 

177  end 

178   

179  hold off  

180  legend; 

181  dateFormat=11; 

182  datetick('x',dateFormat); 
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APPENDIX B. PROCESSED DATASETS BY LOCATION AND DATA 

B.1   Flaming Gorge Flow Gage 

 

Figure B.1-1:Flaming Gorge Flow Empirical Mode Decomposition 
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Figure B.1-2:Flaming Gorge Flow HHT 
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Figure B.1-3:Flaming Gorge Flow Empirical Mode Decomposition IMF 7,8,9 and 10 
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Figure B.1-4:Flaming Gorge Flow Empirical Mode Decomposition Residual 
Superimposed on IMF 7 8 and 9 
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Figure B.1-5:Flaming Gorge Flow Empirical Mode Decomposition IMF 7 8 and 9 
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Figure B.1-6:Flaming Gorge Flow 
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B.2   Jensen Flow Gage 

 

Figure B.2-1:Jensen Flow Empirical Mode Decomposition 
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Figure B.2-2:Jensen Flow Empirical Mode Decomposition HHT 
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Figure B.2-3:Jensen Empirical Mode Decomposition IMF 7 and 8 
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Figure B.2-4:Jensen Empirical Mode Decomposition IMF 8 
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Figure B.2-5:Jensen Flow Data 
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B.3   Little Snake- Lily Flow 

 

Figure B.3-1:Little Snake Lily Empirical Mode Decomposition 
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Figure B.3-2: Little Snake Lily Empirical Mode Decomposition HHT 
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Figure B.3-3: Little Snake Lily Empirical Mode Decomposition IMF 7 
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Figure B.3-4: Little Snake Lily Flow 
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B.4   Yampa Maybel Flow 

 

Figure B.4-1: Yampa Maybel Empirical Mode Decomposition 
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Figure B.4-2: Yampa Maybel Empirical Mode Decomposition HHT 
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Figure B.4-3: Yampa Maybel Empirical Mode Decomposition IMF 8 and 9 
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Figure B.4-4: Yampa Maybel Empirical Mode Decomposition IMF 8 
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Figure B.4-5: Yampa Maybel Flow 
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B.5   Ourey Quarterly Precipitation 

 

Figure B.5-1: Ourey Quarterly Precipitation Empirical Mode Decomposition 
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Figure B.5-2: Ourey Quarterly Precipitation Empirical Mode Decomposition HHT 
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Figure B.5-3: Ourey Quarterly Precipitation Empirical Mode Decomposition IMF 1 
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Figure B.5-4: Ourey Quarterly Precipitation  
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B.6   Jensen Quarterly Precipitation 

 

Figure B.6-1: Jensen Quarterly Precipitation Empirical Mode Decomposition 
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Figure B.6-2: Jensen Quarterly Precipitation Empirical Mode Decomposition HHT 
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Figure B.6-3: Jensen Quarterly Precipitation Empirical Mode Decomposition IMF 1 
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Figure B.6-4: Jensen Quarterly Precipitation 
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B.7   Ouray Yearly Precipitation 

 

Figure B.7-1: Ouray Yearly Precipitation Empirical Mode Decomposition 
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Figure B.7-2: Ouray Yearly Precipitation Empirical Mode Decomposition HHT 
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Figure B.7-3: Ouray Yearly Precipitation Empirical Mode Decomposition IMF 1 
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Figure B.7-4: Ouray Yearly Precipitation 
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Figure B.7-5: Ouray Yearly Precipitation Empirical Mode Decomposition Shortened to 
Account for Missing Data 
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B.8   Jensen Yearly Precipitation  

 

Figure B.8-1: Jensen Yearly Precipitation Empirical Mode Decomposition 
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Figure B.8-2: Jensen Yearly Precipitation Empirical Mode Decomposition HHT 
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Figure B.8-3: Jensen Yearly Precipitation Empirical Mode Decomposition IMF 2 and 3 
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Figure B.8-4: Jensen Yearly Precipitation Empirical Mode Decomposition IMF 2 
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Figure B.8-5: Jensen Yearly Precipitation 
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B.9   Jensen Temperature 

 

Figure B.9-1: Jensen Average Temperature Empirical Mode Decomposition 
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Figure B.9-2: Jensen Average Temperature Empirical Mode Decomposition HHT 
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Figure B.9-3: Jensen Average Temperature 
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B.10 Vernal Temperature 

 

Figure B.10-1: Vernal Average Temperature Empirical Mode Decomposition 
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Figure B.10-2: Vernal Average Temperature Empirical Mode Decomposition HHT 
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Figure B.10-3: Vernal Average Temperature Empirical Mode Decomposition IMF 9 and 
10 
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Figure B.10-4: Vernal Average Temperature 
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B.11 Combination 

 

Figure B.11-1: Flow Residuals 
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Figure B.11-2: Quarterly Precipitation Residuals 
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Figure B.11-3: Yearly Precipitation Residuals 
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Figure B.11-4: Temperature Residuals 
 


